sexta-feira, 23 de julho de 2010
sexta-feira, 9 de julho de 2010
Razão espontânea
Na aula 20 do curso de filosofia, Olavo de Carvalho fala da diferença entre razão espontânea e razão refletida. Dá como exemplo de razão espontânea a percepção pré-analítica de um esquema probabilístico, como o resultado em um jogo de cartas. Digo pré-analítica porque o sujeito parece perceber quais são as alternativas mais vantajosas antes mesmo de considerar detidamente a formulação matemática do problema (os jogadores ficam com as palmas das mãos suadas sempre que optam pela alternativa mais arriscada). Apesar de a conclusão mais comum ser atribuir esse conhecimento à inconsciência, o Olavo objeta que esse tipo de conhecimento é tão consciente quanto as considerações matemáticas posteriores, sendo que estas últimas nos dão mais segurança apenas porque são criações dirigidas por nós mesmos, e não algo que nos chega diretamente da realidade.
O ponto que mais me interessa nessa discussão toda é, claro, como aperfeiçoar a razão espontânea. Alguém fez essa pergunta durante a aula e o Olavo aconselhou a simples abertura intelectual à realidade, a rejeição do senso-comum pré-fabricado etc. Parece mesmo difícil conceber uma maneira de treinar esse tipo de razão, tanto que, na faculdade, quando deparávamos com um exemplo de razão espontânea prodigiosa, atribuíamos o ocorrido à 'inteligência' do sujeito. Só posso dar exemplos da engenharia porque tenho muito pouca experiência com temas filosóficos.
Na faculdade de engenharia, a minha impressão era a de que todos os alunos tinham a faculdade de razão refletida mais ou menos equivalente; qualquer discrepância pontual era facilmente explicada por falta de estudo do assunto específico. Já a razão espontânea variava muito, especialmente em problemas de visualização geométrica. Enquanto alguns sofriam para projetar interseções de planos ou desenhar sólidos a partir de suas projeções, outros faziam-no automaticamente e sem precisar seguir o procedimento canônico (o procedimento na mais das vezes os atrapalhava).
Outro aspecto curioso da razão espontânea é que, além de distribuída desigualmente entre os seres humanos, ela parece ser heterogênea também dentro de cada um deles: enquanto alguns tinham-na desenvolvidíssima para a geometria descritiva e pífia para a álgebra linear, outros, que não podiam desenhar uma pirâmide a partir de suas projeções, intuíam a diagonalização de matrizes sem conhecimento prévio do procedimento.
Um dos meus melhores amigos da época era quase infalível em estimações aleatórias, como acertar a área superficial do continente africano ou do corpo humano, o peso dos livros em uma biblioteca ou o número de bolas de tênis necessárias para encher uma sala. Numa das vezes em que tentou melhorar a estimativa com cálculos, acabou piorando o número.
O ponto que mais me interessa nessa discussão toda é, claro, como aperfeiçoar a razão espontânea. Alguém fez essa pergunta durante a aula e o Olavo aconselhou a simples abertura intelectual à realidade, a rejeição do senso-comum pré-fabricado etc. Parece mesmo difícil conceber uma maneira de treinar esse tipo de razão, tanto que, na faculdade, quando deparávamos com um exemplo de razão espontânea prodigiosa, atribuíamos o ocorrido à 'inteligência' do sujeito. Só posso dar exemplos da engenharia porque tenho muito pouca experiência com temas filosóficos.
Na faculdade de engenharia, a minha impressão era a de que todos os alunos tinham a faculdade de razão refletida mais ou menos equivalente; qualquer discrepância pontual era facilmente explicada por falta de estudo do assunto específico. Já a razão espontânea variava muito, especialmente em problemas de visualização geométrica. Enquanto alguns sofriam para projetar interseções de planos ou desenhar sólidos a partir de suas projeções, outros faziam-no automaticamente e sem precisar seguir o procedimento canônico (o procedimento na mais das vezes os atrapalhava).
Outro aspecto curioso da razão espontânea é que, além de distribuída desigualmente entre os seres humanos, ela parece ser heterogênea também dentro de cada um deles: enquanto alguns tinham-na desenvolvidíssima para a geometria descritiva e pífia para a álgebra linear, outros, que não podiam desenhar uma pirâmide a partir de suas projeções, intuíam a diagonalização de matrizes sem conhecimento prévio do procedimento.
Um dos meus melhores amigos da época era quase infalível em estimações aleatórias, como acertar a área superficial do continente africano ou do corpo humano, o peso dos livros em uma biblioteca ou o número de bolas de tênis necessárias para encher uma sala. Numa das vezes em que tentou melhorar a estimativa com cálculos, acabou piorando o número.
Assinar:
Postagens (Atom)